THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Fatigue Assessment and Extreme Response Prediction of Ship Structures
نویسندگان
چکیده
In this thesis, a simplified narrow-band approximation model is proposed to estimate fatigue damage of ship structures, and an efficient method for extreme response predictions is also developed using upcrossing spectrums of ship responses. The proposed fatigue model includes two main parameters, significant stress range hs and zero upcrossing frequency fz. The first parameter is assumed to be proportional to significant wave height Hs through a factor C, derived from a linear hydrodynamic theory. The value of C depends on the mission conditions. The zero upcrossing frequency is approximated by the encountered wave frequency, where the wave period Tz is deduced to be an explicit function of Hs. The fatigue model is validated by the ―accurate‖ rainflow method with less than 10% of discrepancy. The uncertainties of fatigue life predictions are studied by the safety index, employing the proposed fatigue model. It is shown that the safety index computed using the fatigue model agrees well with that computed from the measurements. With respect to the fact that ship responses are non-Gaussian, the Laplace Moving Average (LMA) method and a transformed Gaussian approach are studied to model the non-Gaussian responses. The transformed Gaussian approach is adopted for the computation of the upcrossing spectrums. The extreme ship responses are then estimated from the upcrossing spectrums. The standard deviation, zero upcrossing frequency, skewness and kurtosis of responses are needed to compute the upcrossing spectrums. It is shown that the extreme responses computed by the proposed method agree well with those computed by the standard engineering method using the measured responses.
منابع مشابه
مقایسه موردی روشهای مختلف تعیین تنش هاتاسپات در جزئیات سازه کشتی
Fatigue analysis and estimation of safe life of structures that are subjected to cyclic loadings, such as ships and offshore structures is one of the most important steps of structural design. Fatigue failure in the form of crack will start from details and propagate in structure. In steel structures these cracks will started from welds. Most of the methods for fatigue life assessment in welded...
متن کاملHull Performance Assessment and Comparison of Ship-Shaped and Cylindrical FPSOs With Regards To: Stability, Sea-Keeping, Mooring and Riser Loads In Shallow Water
Floating, Production, Storage and Offloading “FPSO” have become a popular choice since 1980s for marginal and fast-track developments where subsea pipeline is not an economic or feasible solution for export. Field development usually starts with a concept selection procedure which is constituted from a sequence of multi-disciplinary decision making tasks. As limited data is availabl...
متن کاملDegree of Bending (DoB) in Tubular KT-Joints of Jacket Structures Subjected to Axial Loads
The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of Hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stres...
متن کاملAssessment of different methods for fatigue life prediction of steel in rotating bending and axial loading
Generally, fatigue failure in an element happens at the notch on a surface where the stress level rises because of the stress concentration effect. The present paper investigates the effect of a notch on the fatigue life of the HSLA100 (high strength low alloy) steel which is widely applicable in the marine industry. Tensile test was conducted on specimens and mechanical properties were obtain...
متن کاملModel identification and dynamic analysis of ship propulsion shaft lines
Dynamic response analysis of mechanical structures is usually performed by adopting numerical/analytical models. Finite element (FE) modeling as a numerical approach plays an important role in dynamic response analysis of complex structures. The calculated dynamic responses from FE analysis are only reliable if accurate FE models are used. There are many elements in real mechanical structures w...
متن کامل